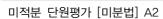
미적분 단원평가 미분법 [A2]

 $\lim_{x\to\infty}\left\{\left(1+\frac{1}{2x}\right)\!\!\left(1+\frac{1}{3x}\right)\!\!\right\}^x \, \text{a. The } ?1)$

- $\Im e$

- $(4) e^{\frac{4}{3}}$


002.

 $\lim_{x\to\infty} x\{\ln(2x+1) - \ln 2x\}$ 의 값을 구하여라.2)

- $\bigcirc \ \frac{1}{4}$
- ② $\frac{1}{2}$

3 1

- ④ 2
- **⑤** 4

$$A = \lim_{x \to 0} \frac{\ln{(1+x)}}{x}, \ B = \lim_{x \to 0} \frac{\ln{(1+3x)}}{x}, \ C = \lim_{x \to 0} \frac{e^{2x}-1}{x}, \ D = \lim_{x \to 0} \frac{3^x-1}{x} \stackrel{\text{Ql}}{=} \text{ } \text{\mathbb{Q}},$$

다음 중 A, B, C, D의 대소 관계로 옳은 것은?3)

- ① A < C < B < D ② A < C < D < B ③ A < D < C < B ④ C < D < B < A ⑤ D < A < C < B

004.

함수 $f(x)=e^{\frac{x}{2}}-1$ 의 역함수를 g(x)라 할 때, $\lim_{x\to 0}\frac{g(x)}{x}$ 의 값은? $^{4)}$

- ② $\frac{1}{2}$

3 1

4 2

⑤ 4

다음 중 옳지 않은 것은?5)

①
$$(e^{x+3})' = e^{x+3}$$

②
$$(x^2e^x)' = (x^2 + 2x)e^x$$

$$(\ln 5x)' = \frac{1}{5x}$$

$$(x \log x)' = \log x + \frac{1}{\ln 10}$$

006.

함수 $f(x) = 2^x \ln x + 3x - 1$ 일 때, f'(1)의 값은?6)

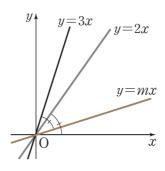
① 1

2 2

3

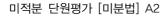
4

⑤ 5


함수 $y = \sin 2x + \sqrt{3}\cos 2x$ 에 대한 다음 보기의 설명 중 옳은 것만을 있는 대로 고른 것은?7)

- ㄱ. 최댓값은 2이다.
- L. 주기는 2π이다.
- ㄷ. 그래프는 $y=2\sin 2x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{6}$ 만큼 평행이동한 것이다.
- ① ¬
- ② 7, L ③ 7, ⊏

- ④ ∟, ⊏
- ⑤ 7, ㄴ, ㄷ


008.

그림과 같이 직선 y=2x와 x축의 양의 방향이 이루는 각의 크기와 두 직선 $y=3x,\ y=mx$ 가 이루는 예각의 크기가 서로 같을 때, 상수 m의 값은(?8) (단, m > 0)

- ② $\frac{1}{5}$

- ⑤ 1

함수
$$f(k) = \lim_{x \to 0} \frac{1 - \cos kx}{x^2}$$
에 대하여 $2\sum_{k=1}^{10} f(k)$ 의 값은?9)

① 355

② 365

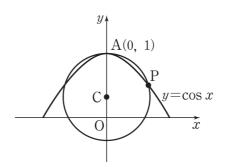
③ 375

4 385

⑤ 395

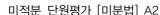
010.

$$f(x) = \cos x + 4\sin x$$
일 때,
$$\lim_{h \to 0} \frac{f(\pi - 2h) - f(\pi)}{h}$$
의 값을 구하여라.10)



함수
$$f(x) = \begin{cases} \frac{\ln(x+1)^2}{\tan ax} & (x \neq 0) \\ 2 & (x=0) \end{cases}$$
가 $x = 0$ 에서 연속일 때, 실수 a 의 값을 구하여라. 11

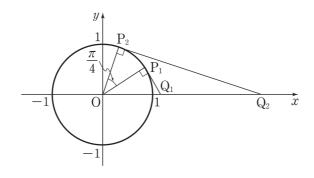
012.

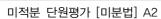

다음 그림과 같이 점 A(0, 1)과 곡선 $y = \cos x$ 위의 점 P를 모두 지나면서 중심이 y축 위에 있는 원이 있다. 점 P가 곡선을 따라 점 A에 한없이 가까워질 때, 원의 중심 C의 좌표는 (0, a)에 가까워진다. 이때 a의 값을 구하여라. 12)

- \bigcirc 0
- 2 1

3 2

- **4** 3
- ⑤ 5

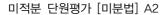

함수 $f(x) = \frac{ax+b}{x^2+1}$ 에 대하여 f'(1)=2, f'(2)=1일 때, f(1)의 값은? $^{13)}$ (단, a, b는 상수)


- ① $-\frac{7}{2}$ ② -3 ③ $-\frac{5}{2}$

- **4** 2

014.

다음 그림과 같이 원 $x^2+y^2=1$ 위의 점 P_1 에서의 접선이 x축과 만나는 점을 Q_1 이라 할 때, Δ O Q_1 P_1 의 넓이는 $\frac{1}{4}$ 이다. 점 P_1 을 원점 O를 중심으로 $\frac{\pi}{4}$ 만큼 회전시킨 점을 P_2 라 하고, 점 P_2 에서의 접선이 x축과 만나는 점을 Q_2 라 하면 ΔOQ_2P_2 의 넓이 S이다. 60S의 값을 구하여라. $^{14)}$ (단, 점 P_1 은 제 $^{14)}$ 사분면 위의 점이다.)



$$\lim_{x\to 0}\frac{2^x+2^{2x}+2^{3x}+\dots+2^{10x}-10}{x}$$
의 값은 $a\ln b$ 이다. $a+b$ 의 값을 구하여라. 15 이 (단, a , b 는 자연수이다.)

016.

함수 $f(x) = \frac{e^{x-1}}{x}$ 에 대하여 $\lim_{x \to 1} \frac{f'(x) - f'(1)}{x^2 - 1}$ 의 값은?16)
① $\frac{1}{e}$ ② $\frac{1}{2}$ ③ 2

- (4) e
- \bigcirc 2e

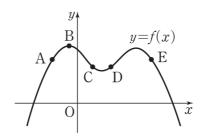
곡선 $y=\sqrt{ax+b}$ 위의 x좌표가 2인 점에서의 접선의 방정식이 x-3y+4=0일 때, 상수 $a,\ b$ 에 대하여 60(a+b)의 값을 구하여라. $^{17)}$ (단, a>0)

018.

곡선 $y=e^{x+1}-1$ 위의 점 P와 두 점 A(0,-2), B(2,0)으로 만들어지는 삼각형의 넓이의 최솟값을 구하여라. 18)

함수 $f(x) = x \ln x$ 에 대하여 함수 g(x) = f(x) + f(1-x)의 극솟값은?19)

- ① $-2\ln 2$
- \bigcirc $-\ln 2$
- 3 0


- 4 ln2
- ⑤ 2ln2

020.

미분가능한 함수 y=f(x)의 그래프가 다음 그림과 같을 때, 다음 중 두 부등식

$$\frac{dy}{dx} > 0, \qquad \frac{d^2y}{dx^2} > 0$$

을 동시에 만족시키는 점은?20)

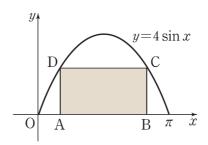
- ① A
- ② B

3 C

- 4 D
- ⑤ E

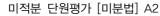
 $\dfrac{1}{2} \leq x \leq 4$ 에서 함수 $f(x) = a(\log_2 x) \left(\log_2 \dfrac{x}{8}\right)^2$ 의 최댓값이 4일 때,

함수 f(x)의 최솟값을 구하여라. $^{21)}$ (단, a>0)


- ① -4

3 - 8

- (4) -12
- \bigcirc -16


022.

다음 그림과 같이 곡선 $y = 4\sin x (0 < x < \pi)$ 와 x축으로 둘러싸인 부분에 내접하는 직사각형 ABCD의 둘레의 길이 최대일 때, 선분 AB의 길이는?22)

- $\bigcirc \frac{\pi}{4}$

 $3\frac{\pi}{2}$

함수
$$f(x) = \begin{cases} e^{ax} & (x < 0) \\ \cos \pi x + 2x + b & (x \ge 0) \end{cases}$$
가 $x = 0$ 에서 미분가능할 때, $a + b$ 의 값을 구하여라.23) (단, a, b 는 상수)

024.

곡선 $y=3x+x\ln x$ 위의 한 점에서의 접선의 기울기가 4인 접선에 대하여 접점을 지나고 이 접선에 수직인 직선이 x축과 만나는 점의 x좌표를 구하여라. 24

함수 $f(x) = a \sin x - (a+2)\cos x - 10x$ 가 실수 전체의 집합에서 감소하도록 하는 정수 a의 개수를 구하여라. 25

[미적분 단원평가] 미분법 A2 정답표

문항	정답	문항	정답	문항	정답	문항	정답	문항	정답
01	2	02	2	03	3	04	4	05	3
06	5	07	3	08	1	09	4	10	8
11	1	12	1	13	1	14	90	15	57
16	2	17	160	18	3	19	2	20	4
21	5	22	2	23	2	24	13	25	15

12번 해설

두 점 (0, a), $P(t, \cos t)$ 사이의 거리가 원의 반지름 1-a이므로

$$\sqrt{t^2 + (a - \cos t)^2} = 1 - a$$

정리하면
$$a = \frac{1-\cos^2 t - t^2}{2(1-\cos t)} = \frac{1+\cos t}{2} - \frac{t^2}{2(1-\cos t)}$$
이고, $\lim_{t \to 0} a = 0$ 이다.

**
$$a$$
를 $\frac{\sin^2-t^2}{2(1-\cos t)}$ 까지 정리하면 말린다. 이 경우 $\frac{\left(\frac{\sin t}{t}\right)^2-1}{2 imes\frac{1-\cos t}{t^2}}$ 이므로 $\frac{1^2-1}{2 imes\frac{1}{2}}=0$ 으로 수렴한다.

20번 해설

 $\frac{d^2y}{dx^2}$ 는 $\frac{d}{dx}\left(\frac{d}{dx}y\right)$, 즉, 이계도함수를 의미한다.

보기 중 증가, 아래로 볼록인 점은 D 뿐이다.

25번 해설

실수 전체의 집합에서 감소하므로 $f'(x) \leq 0$ 이다.

$$f'(x) = a\cos x + (a+2)\sin x - 10 \le 0$$

에서 $a\cos x + (a+2)\sin x \le 10$ 이 모든 실수 x에 대하여 성립해야 한다.

$$a\cos x + (a+2)\sin x = \sqrt{a^2 + (a+2)^2}\sin(x+\alpha)$$

이므로
$$\sqrt{a^2 + (a+2)^2} \le 10$$
이다.

- * f'(x) < 0으로 풀면 털리는 것에 주의.
- ※ 합성은 그냥 해두자.