미적분 단원평가 수열의 국한 [B1]

 $\lim_{n\to\infty}\frac{1}{\sqrt{n^2+2n+3}-n+1}$ 의 값은?1)

- $\textcircled{4} \ 2 \qquad \qquad \textcircled{5} \ \frac{5}{2}$

002.

수렴하는 수열 $\{a_n\}$ 에 대하여 $a_1=2$ 이고,

$$a_{n+1} = \frac{3n(2n+3)}{(2n-1)(2n+1)} - 2a_n (n=1, 2, 3, \dots)$$

이 성립할 때, $\lim_{n \to \infty} a_n = \alpha$ 이다. 이때 30α 의 값을 구하여라. $^{2)}$

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$\lim_{n\to\infty} (a_n - b_n) = 2, \quad \lim_{n\to\infty} a_n = \infty$$

일 때,
$$\lim_{n\to\infty} \frac{2a_n-3b_n}{a_n+2b_n}$$
의 값은?3)

- ① -3 ② $-\frac{3}{2}$
- 3 1
- $4 \frac{1}{3}$ 5 1

004.

0 < a < b일 때, $\lim_{n \to \infty} \left(a^n + b^n\right)^{\frac{1}{n}}$ 의 값은?4)

 \bigcirc a

3 1

- $\textcircled{4} \quad \frac{b}{2}$
- ⑤ b

미적분 단원평가 [수열의 극한] B1

005.

수열 $\{a_n\}$ 에 대하여

$$2n^2 - 1 < 3n^2 a_n < 2n^2 + 1$$

일 때, $\lim_{n\to\infty}60a_n$ 의 값을 구하여라. $^{5)}$

006.

수열 $\{a_n\}$, $\{b_n\}$ 에 대한 다음 보기의 설명 중 옳은 것만을 있는 대로 고른 것은?6)

- ㄱ. $\lim_{n\to\infty} |a_n| = 0$ 이면 수열 $\{a_n\}$ 은 수렴한다.
- ㄴ. $\lim_{n\to\infty}\frac{a_n}{n}=0$ 이면 수열 $\left\{a_n\right\}$ 은 수렴한다.
- 다. 두 수열 $\{a_n + b_n\}$, $\{a_n b_n\}$ 이 모두 수렴하면 수열 $\{a_n\}$ 과 수열 $\{b_n\}$ 은 모두 수렴한다.
- ① ¬
- (2) L

③ ¬, ⊏

- ④ ∟, ⊏
- ⑤ 7, ㄴ, ㄸ

수열 $\{a_n\}$ 에 대하여 $\lim_{n \to \infty} \frac{3^n a_n}{2^n + 5}$ 이 0이 아닌 실수로 수렴할 때, $\lim_{n \to \infty} \frac{a_n}{a_{n+1}}$ 의 값은?7)

- ① $\frac{3}{5}$ ② $\frac{2}{3}$ ③ $\frac{3}{2}$ ④ $\frac{5}{3}$ ⑤ $\frac{8}{3}$

008.

급수 $\lim_{n \to \infty} \sum_{k=1}^n \left\{ \frac{1+(-1)^k}{3} \right\}^k$ 의 값은 $\frac{q}{p}$ 이다. 10p+q의 값을 구하여라. $^{(8)}$

(단, p)와 q는 서로소인 자연수이다.)

미적분 단원평가 [수열의 극한] B1

009.

등비수열
$$\left\{a_n\right\}$$
에 대하여 $\sum_{n=1}^{\infty}a_n=1$, $\sum_{n=1}^{\infty}(a_n)^2=3$ 일 때, $\sum_{n=1}^{\infty}(a_n)^3$ 의 값을 구하여라. $^{9)}$

010.

자연수 n에 대하여 곡선 $y=x^2$ 위의 점 $(n,\,n^2)$ 에서의 접선과 y축의 교점의 좌표를 $(0,\,g(n))$ 이라 할 때, $\lim_{n\to\infty}\frac{g(n)+g(\sqrt{n^2+n})}{n^2}$ 의 값은 $^{(10)}$

- ① -2
- (2) -1
- 3 0

4 1

⑤ 2

다음 그림과 같이 나열된 수들의 총합이 n(n+1)(n+2)일 때, $\lim_{n\to\infty}\frac{a_n}{n}$ 의 값을 구하여라. $^{11)}$

 a_1

 a_2 a_2

 $a_3 \ a_3 \ a_3$

1115

 $a_n \ a_n \ a_n \ \cdots \ a_n$

012.

등비수열 $\left\{ \left(\frac{x}{4}+1\right)^n \right\}$ 과 등비급수 $\sum_{n=1}^{\infty} \left(\frac{1}{x^2+1}\right)^n$ 이 모두 수렴하도록 하는 x의 값의 범위는?12)

- ① -8 < x < 0 ② $-8 < x \le 0$ ③ $-8 \le x \le 0$

다음 보기의 급수 중 발산하는 것만을 있는 대로 고른 것은?13)

$$\neg . \sum_{n=1}^{\infty} \frac{2n}{3n+1}$$

$$\vdash$$
. $\sum_{n=1}^{\infty} (\sqrt{n+2} - \sqrt{n+1})$

$$\sqsubseteq \sum_{n=1}^{\infty} \left(\frac{2n-1}{n+1} - \frac{2n+1}{n+2} \right)$$

$$\neg . \sum_{n=1}^{\infty} \frac{2n}{3n+1}$$

$$\neg . \sum_{n=1}^{\infty} \left(\sqrt{n+2} - \sqrt{n+1} \right)$$

$$\neg . \sum_{n=1}^{\infty} \left(\frac{2n-1}{n+1} - \frac{2n+1}{n+2} \right)$$

$$\neg . \sum_{n=1}^{\infty} \left(\frac{2n-1}{n+2} - \frac{2n+1}{n+2} \right)$$

- ③ ㄴ, ㄹ

- ① ¬, ∟ ② ¬, ⊏ ④ ¬, ∟, ⊏ ⑤ ¬, ∟, ᡓ

014

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대한 다음 보기의 설명 중 옳은 것만을 있는 대로 고른 것은?14)

ㄱ.
$$\sum_{n=1}^{\infty} a_n b_n$$
이 수렴하고 $\lim_{n \to \infty} b_n = 2$ 일 때, $\lim_{n \to \infty} a_n = 0$ 이다.

ㄴ.
$$\sum_{n=1}^{\infty}a_n$$
과 $\sum_{n=1}^{\infty}b_n$ 이 수렴하면 $\lim_{n\to\infty}a_nb_n=0$ 이다.

ㄷ.
$$\sum_{n=1}^{\infty}a_n$$
과 $\sum_{n=1}^{\infty}b_n$ 이 수렴하면 $\sum_{n=1}^{\infty}2^{a_n+b_n}$ 은 발산한다.

③ ⊏

- ① ¬ ④ ¬, ∟

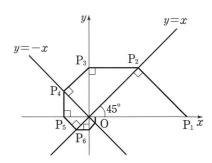
수렴하는 수열 $\{a_n\}$ 이

$$a_1 = \sqrt{3} \; , \; a_2 = \sqrt{3\sqrt{3}} \; , \; a_3 = \sqrt{3\sqrt{3\sqrt{3}}} \; , \; \cdots$$

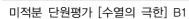
과 같이 정의될 때, $\lim_{n\to\infty}a_n$ 의 값을 구하여라. $^{15)}$

016.

다음 그림과 같이 점 $P_1(2, 0)$ 에서 직선 y=x에 내린 수선의 발을 P_2 , 점 P_2 에서 y축에 내린 수선의 발을 P_3 , 점 P_3 에서 직선 y=-x에 내린 수선의 발을 P_4 라 한다. 이와 같은 과정을 한없이 반복할 때, $\overline{P_1P_2}+\overline{P_2P_3}+\overline{P_3P_4}+\cdots$ 의 합은 $?^{16)}$



- ① $1+\sqrt{2}$
- ② $2 + \sqrt{2}$
- $3 2+2\sqrt{2}$
- (4) $4+2\sqrt{2}$ (5) $2+4\sqrt{2}$



수렴하는 수열 $\{a_n\}$ 에 대하여

$$\left(a_1 - \frac{1}{1^2}\right) + \left(a_2 - \frac{1+2}{2^2}\right) + \cdots + \left(a_n - \frac{1+2+3+\cdots+n}{n^2}\right) + \cdots$$

이 수렴할 때, $\lim_{n \to \infty} 20a_n$ 의 값을 구하여라. $^{17)}$

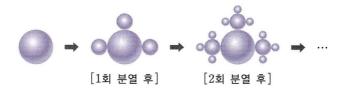
018.

어떤 작물의 경작지 1m^2 당 1년 동안 사용하는 농약 속에는 총 36mg의 중금속이 포함되어 있고 연말에 이 경작지에 남아 있는 중금속을 측정하면 항상 전체의 $\frac{3}{4}$ 은 없어지고 처음 중금속의 양의 $\frac{1}{4}$ 만 남는다. 이와 같은 농약을 올해부터 사용하기 시작하여 매년 말에 경작지 1m^2 당 남아 있는 중금속의 양을 계속해서 측정할 때, 토양에 남아 있는 중금속의 양은 어떤 값에 가까워지겠는가?18)

- ① 12mg
- ② 14mg
- ③ 16mg

- ④ 18mg
- ⑤ 20mg

구 모양의 효모 한 개는 자신의 반지름의 길이의 $\frac{1}{2}$ 을 반지름으로 하는 효모 3개를 생성하는 분열을 한다. 반지름의 길이가 1인 효모 한 개가 다음 그림과 같이 계속 분열을 할 때, 모든 효모의 부피의 합은 $\frac{q}{p}\pi$ 이다. p+q의 값을 구하여라. $^{19)}$ (단, 한 번 분열한 효모는 다시 분열하지 않고, p와 q는 서로소인 자연수이다.)



020.

규칙 S를 실수 a(a>1)에 대하여 $b=\sum_{n=1}^{\infty}\left(\frac{1}{a}\right)^n$ 으로 정의하며 [그림1]과 같이 나타내고 규칙 T를 실수 c에 대하여 $d=16^c$ 으로 정의하며 [그림2]와 같이 나타내기로 한다.

다음 그림의 실수 $x,\ y,\ z$ 에 대하여 $\frac{xz}{y}$ 의 값을 구하여라. $^{20)}$

$$\begin{array}{c}
x \rightarrow S \rightarrow y \\
\hline
T \\
z \rightarrow S \rightarrow 1
\end{array}$$

수열 $1, -1, 1, -1, 1, -1, \cdots$ 의 첫째항부터 제n항까지의 합 S_n 에 대하여

$$S = \lim_{n \to \infty} \frac{S_1 + S_2 + S_3 + \dots + S_n}{n}$$

이라 할 때, 10S의 값을 구하여라. 21)

022.

자연수 n에 대하여 원점 O와 점 (n, 0)을 이은 선분을 밑변으로 하고, 높이가 h_n 인 삼각형의 넓이를 a_n 이라 하자. 수열 $\{a_n\}$ 은 첫째항이 $\frac{1}{2}$ 인 등비수열일 때, 다음 보기에서 옳은 것만을 있는 대로 고른 것은?22)

ㄱ. 모든 자연수 n에 대하여 $a_n=\frac{1}{2}$ 이면 $h_n=\frac{1}{n}$ ㄴ. $h_2=\frac{1}{4}$ 이면 $a_n=\left(\frac{1}{2}\right)^n$

ㄴ.
$$h_2 = \frac{1}{4}$$
이면 $a_n = \left(\frac{1}{2}\right)^n$

ㄷ. $h_2 < \frac{1}{2}$ 이면 $\lim_{n \to \infty} nh_n = 0$

- ① ¬

③ ¬, ∟

- ④ ∟, ⊏
- ⑤ 7. ㄴ. ㄷ

자연수 n에 대하여 집합 A_n 을

$$A_n = \left\{ x \left| \left| \frac{x}{n} - 1 \right| < \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}, \ x = \frac{1}{2^n} \right\} \right\}$$

로 정의한다. 집합 A_n 의 원소의 개수를 a_n 이라 할 때, $\lim_{n \to \infty} \frac{a_n}{n}$ 의 값을 구하여라. $^{(23)}$

024.

한 변의 길이가 1인 정삼각형의 각 변을 n등분한 점들을 각 변에 평행한 선분들로 모두 이을 때 만들어지는 도형에서 선분들의 총 길이의 합을 a_n 이라 하고 선분들의

교점인 꼭짓점의 총 개수를 b_n 이라 하자. 이때 $\lim_{n \to \infty} \frac{a_n b_n}{n^3}$ 의 값은?24)

- $\bigcirc \frac{1}{4}$
- $2 \frac{1}{2}$
- $3\frac{3}{4}$

4 1

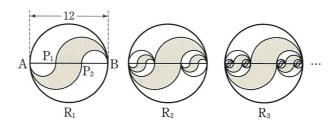
 $\bigcirc \frac{5}{4}$

다음 그림과 같이 길이가 12인 선분 AB를 지름으로 하는 원을 그리고, 선분 AB의 3등분점을 각각 P_1 , P_2 라 하고 선분 AP $_1$ 을 지름으로 하는 원의 아래쪽 반원의 호, 선분 AP $_2$ 를 지름으로 하는 원의 아래쪽 반원의 호, 선분 P_2 B를 지름으로 하는 원의 위쪽 반원의 호, 선분 P_1 B를 지름으로 하는 원의 위쪽 반원의 호를 경계로 하여 만든 \bigcirc 모양의 도형에 색칠하여 얻은 그림을 P_1 이라 하자.

그림 R_1 에서 선분 AB 위의 색칠되지 않은 두 선분 AP_1 , P_2B 를 각각 지름으로 하는 두 원을 그리고, 이 두 원 안에 각각 그림 R_1 을 얻는 것과 같은 방법으로 만들어지는 두 \mathcal{N} 모양의 도형에 색칠하여 얻은 그림을 R_2 라 하자.

그림 R_2 에서 두 선분 AP_1 , P_2B 위의 색칠되지 않은 네 선분을 각각 지름으로 하는 네 원을 그리고, 이 네 원 안에 각각 그림 R_1 을 얻는 것과 같은 방법으로 만들어지는 네 \checkmark 모양의 도형에 색칠하여 얻은 그림을 R_3 이라 하자.

이와 같은 과정을 계속하여 n 번째 얻은 그림 R_n 에 색칠되어 있는 모든 \mathcal{S} 모양의 도형의 넓이의 합을 S_n 이라 할 때, $\lim S_n$ 의 값은(25)



- ① $\frac{87}{7}\pi$
- ② $\frac{95}{7}$
- $3 \frac{108}{7} 7$

- $4 \frac{118}{7}\pi$
- ⑤ $\frac{125}{7}\pi$

[미적분 단원평가] 수열의 극한 B1 정답표

문항	정답								
01	1	02	15	03	4	04	5	05	40
06	3	07	3	08	54	09	3	10	1
11	3	12	1	13	5	14	5	15	3
16	3	17	10	18	1	19	47	20	40
21	5	22	5	23	2	24	3	25	3