2007학년도 5월 고3 경기도학업성취도평가 문제지

수리 영역(기형)

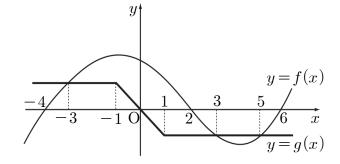
게 2 교시	성명	수헌버승		3				1
$M \subseteq MM$				J			_	L

- 문제지에 성명과 수험 번호를 정확히 기입하시오.
- 답안지에 수험 번호, 선택 과목, 답을 표기할 때에는 반드시 '수험생 이 지켜야 할 일'에 따라 표기하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하 시오
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하 시오. 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.
- $1.9^x = 2$ 일 때, $\left(\frac{1}{27}\right)^{-4x}$ 의 값은? [2점]

 - $2\frac{1}{16}$
 - 3 16
 - **4** 64
 - $\bigcirc 256$

1 1

- 2. 무리방정식 $x^2 x + \sqrt{x^2 x 2} = 4$ 의 모든 실근의 곱은? [2점]
 - (1) -6
 - \bigcirc -3
 - ③ 3
 - **4 6**
 - **⑤** 18


- $3. \lim_{n\to\infty} (\sqrt{4n^2+2n}-2n)$ 의 값은? [2점]
 - ① 1
 - $2\frac{1}{2}$
 - $3\frac{1}{3}$
 - $4)\frac{1}{4}$
 - ⑤ 0

 $\textbf{4.} \ x 에 대한 다항식 \ f(x) 가 \lim_{x \to 2} \frac{f(x)}{x-2} = 3, \lim_{x \to \infty} \frac{f(x)}{x^2-x} = 1 을 만족$

시킬 때, f(1)의 값은? [3점]

- 3 0
- 4 1
- ⑤ 2

6. 두 함수 $y=f(x),\,y=g(x)$ 의 그래프가 다음과 같다. $A=\{x\mid (x+4)(x-6)\leq 0,\,x$ 는 정수 $\},$ $B=\Big\{x\mid \frac{f(x)}{g(x)}\geq 1\Big\}$ 일 때, $A\cap B$ 의 원소의 개수는? [4점]

- ① 3
- 2 4
- 35
- **4** 6
- ⑤ 7
- 5. 공사건이 아닌 두 사건 A, B가 서로 독립일 때, 확률의 성질에 대한 설명으로 항상 옳은 것을 <보기>에서 모두 고르면? [3점]

____ 보기>__

- $\neg. P(A^C \mid B) = 1 P(A)$
- $L. P(A \cup B) = P(A) + P(B)$
- \vdash . $P(B) = P(A) \cdot P(B) + P(A^C) \cdot P(B)$
- $\textcircled{1} \ \neg$
- ② L
- ③ ¬, ⊏
- ④ ∟, ⊏
- ⑤ ┐, ㄴ, ⊏

7. 함수의 극한에 대한 설명으로 항상 옳은 것을 <보기>에서 모두 고르면? [3점]

- ㄱ. $\lim_{x\to 0} f(x) = 1$ 이면 f(0) = 1이다.
- ㄴ. $\lim_{x \to 1} f(x) = 1$ 이면 $\lim_{x \to \infty} f\left(1 + \frac{1}{x}\right) = 1$ 이다.
- ㄷ. f(x) < g(x) < h(x)이고 $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to 0} h(x) = 0$ 이면
 - $\lim_{x\to 0} g(x) = 0 \text{ or } .$
- ② ⊏
- ③ ¬, ∟
- ④ ∟, ⊏
- ⑤ ¬, ∟, ⊏

- **8.** 세 집합 $A = \{1, 2, 3\}, B = \{4, 5, 6\}, C = \{7, 8, 9\}$ 가 있다. 각 집합에서 원소를 한 개씩 뽑았을 때, 나온 세 수의 곱이 3의 배수가 될 확률은? [4점]

 - $2\frac{13}{27}$
 - $3) \frac{5}{9}$
 - $4)\frac{17}{27}$

9. 이차정사각행렬 X, Y에 대하여 연산 \odot 를 $X \odot Y = XY + YX$ 로 정의하자. 연산 \odot 에 대한 성질로 항상 옳은 것을 <보기>에서 모두 고르면? (단, A, B, C는 이차정사각행렬이다.) [3점]

- $\neg A \odot B = B \odot A$
- ㄴ. $pA \odot qB = pq(A \odot B)$ (단, p,q는 실수이다.)
- \sqsubseteq . $(A+B)\odot C = (A\odot C) + (B\odot C)$
- ① ¬
- ② ⊏
- ③ ¬, ∟
- ④ ∟, ⊏
- ⑤ ┐, ㄴ, ⊏

10. 함수 $f(x) = a^x$ 에 대한 설명으로 항상 옳은 것을 <보기>에서 모두 고르면? (단, a > 1이다.) [4점]

$$\neg. f(x) > 0$$

$$L. f(x) + f(-x) \ge 2$$

$$\Box f(|x|) \ge \frac{1}{2} \{f(x) + f(-x)\}$$

- $\textcircled{1} \ \neg$
- ② ⊏
- ③ ¬, ∟
- ④ ∟, ⊏
- ⑤ ¬, ∟, ⊏

11. 다음은 모든 자연수 n에 대하여

$$(n^2-n+1)+(n^2-n+3)+(n^2-n+5)+\cdots$$

$$+(n^2+n-3)+(n^2+n-1)=n^3$$

이 성립함을 수학적귀납법으로 증명한 것이다.

[증명]

- (i) n=1일 때, (좌변)=1, (우변)=1³이므로 성립한다.
- (ii) n = k일 때 성립한다고 가정하면

$$(k^2-k+1)+(k^2-k+3)+\cdots+(k^2+k-1)=k^3$$
 $n=k+1$ 일 때

$$(k^2+k+1)+(k^2+k+3)+\cdots+$$
 (71)

$$= (k^2 - k + 1) + (k^2 - k + 3) + \dots + (k^2 + k - 1) + (1 + k + 1) + (1 + k + 1)$$

따라서 n = k + 1일 때도 성립한다.

- 그러므로 주어진 식은 모든 자연수 n에 대하여 성립한다.
- 이 증명에서 (가), (나), (다)에 알맞은 것은? [4점]

①
$$k^2 + 3k - 1$$
 $2k^2$ $k^3 + 1$

$$2^2$$

②
$$k^2+3k-1$$
 $2(k^2+1)$ $(k+1)^3$

$$k^2 \pm 1$$
)

$$3 k^2 + 3k - 1 2k(k+1) k^3 + 1$$

$$4 k^2 + 3k + 1$$

$$2k^2 \qquad (k+1)^3$$

$$5 k^2 + 3k + 1 2k(k+1) (k+1)^3$$

$$9l_2(l_2 + 1)$$

$$(k+1)$$

5

12. 연립일차방정식
$$\begin{cases} a(a+2)x-y=0 \\ (b+1)^2x+y=0 \end{cases}$$
이 $x=0$, $y=0$ 이외의 해를 가질 때, 점 (a,b) 가 나타내는 도형의 길이는? [3점]

- ① π
- 2π
- 34π
- 46π
- $\bigcirc 8\pi$

13. 그림과 같이 모든 자연수를 1부터 차례대로 나열하였다. 3의 배수와 4의 배수를 제외하고 남아 있는 수를 크기순으로 나열하여 수열 $\{a_n\}$ 을 만들었다.

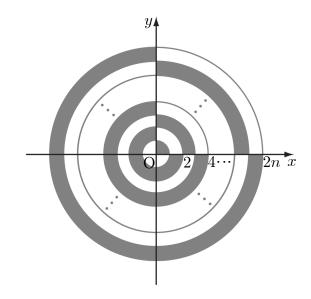
 $1, 2, 5, 7, 10, 11, 13, 14, \cdots$

그림에서 a_{2007} 이 i 행 j열의 수일 때, i+j의 값은? [4점]

제1열 제2열 제3열 제4열 제5열 제6열 제7열 제8열 제9열 제10열

제1행	1	2	X	*	5	6	7	X	9	10
제2행	11)2	13	14	15)16	17)\8	19	20
제3행	24	22	23	24	25	26	27	28	29	30
제4행	31	32	33	34	35	36	37	38	39	3 10
제5행	41	42	43	4 4	#5	46	47	48	49	50
제6행	M	52	53	54	55	56	377	58	59	60
÷	•••	:		:	:	:	:	:	:	÷

- $\bigcirc 405$
- 2 407
- 3 409
- 411
- ⑤ 413


14. 다음 알고리즘을 실행시켰을 때, 인쇄되는 S의 값은? [3점]

- <1단계> A=0, N=1, S=0으로 놓는다.
- < 2단계> N+1의 값을 N으로 놓는다.
- <3단계> A+2의 값을 A로 놓는다.
- <4단계> S+A의 값을 S로 놓는다.
- <5단계> $N \ge 15$ 이면 <6단계>로 가고, N < 15이면 <2단계>로 간다.
- <6단계> S를 인쇄한다.
- ① 182
- 2196
- 3 210
- 4 225
- ⑤ 240

- 15. 중심이 원점이고 반지름의 길이가 $1, 2, 3, \dots, 2n$ 인 동심원이 있다.
- <1단계> 반지름의 길이가 1인 원 내부의 1사분면에 검은색을 칠하고, 반지름의 길이가 1인 원과 반지름의 길이가 2인 원 사이의 2, 3, 4사분면에도 검은색을 칠한다.
- <2단계> 반지름의 길이가 2인 원과 반지름의 길이가 3인의 원사이의 1사분면에 검은색을 칠하고, 반지름의 길이가 3인 원과 반지름의 길이가 4인 원사이의 2, 3, 4사분면에도 검은색을 칠한다.

:

< n단계> 반지름의 길이가 2n-2인 원과 반지름의 길이가 2n-1인 원 사이의 1사분면에 검은색을 칠하고, 반지름의 길이가 2n-1인 원과 반지름의 길이가 2n인 원 사이의 2, 3, 4 사분면에도 검은색을 칠한다.

이와 같이 n단계까지 검은색으로 칠한 넓이의 합을 S_n 이라 할 때,

$$\lim_{n\to\infty}\frac{S_n}{n^2}$$
의 값은? [4점]

- $\bigcirc \frac{3}{4}\pi$
- \bigcirc π
- $3\frac{4}{3}\pi$
- $4\frac{3}{2}\pi$
- \odot 2π

7

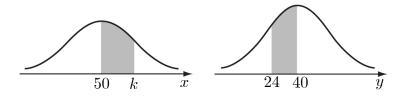
16. 다음은 함수 f(x) = |x(x-k)|의 x = 0에서 연속성과 미분가능성을 조사하는 과정이다.

- (i) x = 0에서 f(x)의 연속성 f(0) = 0이고 $\lim_{h \to 0} \{f(0+h) f(0)\} = \lim_{h \to 0} |h(h-k)| = \boxed{(プ)}$ 따라서 f(x)는 x = 0에서 k의 값에 관계없이 연속이다. (ii) x = 0에서 f(x)의 미분가능성 $\lim_{h \to +0} \frac{f(0+h) f(0)}{h} = \lim_{h \to +0} \frac{|h(h-k)|}{h} = |k|$ 따라서 f(x)는 k = 0인 경우에만 x = 0에서 $\boxed{(\Gamma)}$
 - 이 과정에서 (가), (나), (다)에 알맞은 것은? [3점]

	<u>(가)</u>	<u>(나)</u>	<u>(다)</u>
1	0	k	미분가능하다.
2	0	- k	미분가능하지 않다.
3	0	- k	미분가능하다.
4	-k	$\mid k \mid$	미분가능하다.
5	-k	- k	미분가능하지 않다.

- 17. 시간이 지남에 따라 일정한 비율로 늘어나는 두 종류의 세균 A,
 B가 있다. A는 3시간이 지날 때마다 그 수가 2배로 늘어나고,
 B는 5시간이 지날 때마다 3배로 늘어난다. A세균 100마리와
 B세균 1000마리를 동시에 배양하기 시작하였을 때, A의 수가
 B의 수 이상이 되도록 배양하는데 걸리는 최소의 시간은? (단, log₁₀2=0.30, log₁₀3=0.48로 계산한다.) [4점]
 - ① 250
 - 2 270
 - 3 290
 - 4 310
 - ⑤ 330

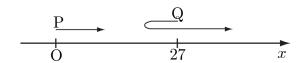
단답형


18. 함수 f(x) = (x-1)(x-2)(x-3)일 때, f'(5)의 값을 구하시오. [3점]

 ${f 20.} \, \log_2 \left({}_{100}{f C}_0 + {}_{100}{f C}_1 + {}_{100}{f C}_2 + \cdots \right. + {}_{100}{f C}_{100}
ight)$ 의 값을 구하시오. [3점]

 $19. -2 \le x \le 4$ 일 때, 지수함수 $y = 3^{x^2 - 4x - 3}$ 의 최대값과 최소값의 곱을 구하시오. [3점]

9


21. 두 확률변수 X, Y가 각각 정규분포 $N(50,\ 10^2)$, $N(40,\ 8^2)$ 을 따른다고 한다.

이 때, $P(50 \le X \le k) = P(24 \le Y \le 40)$ 을 만족시키는 k의 값을 구하시오. [3점]

23. 수직선 위에서 움직이는 두 점 P, Q가 있다.

출발한 지 t초 후 두 점 P, Q의 위치가 각각 $x_1(t)=kt$, $x_2(t)=t^3-3t^2+27$ 일 때, 점 P, Q가 적어도 한 번 만나게 되는 상수 k의 최소값을 구하시오. [4점]

 $\mathbf{22}$. 미분가능한 함수 y = f(x)에 대하여 f'(1) = a일 때,

$$\lim_{h\to 0}\frac{1}{h}\Biggl\{\sum_{k=1}^5 f(1+kh)-5f(1)\Biggr\}=420$$
을 만족시키는 상수 a 의 값을 구하시오. [4점]

24. 한 변의 길이가 4인 정사각형을 한 변의 길이가 1인 정사각형 16개로 나누었다. 오른쪽 그림과 같이 문자 a를 정사각형의 대각선의 양 끝에 고정하여 문자 a, b, c, d를 다음과 같은 규칙으로 배열하려고 한다.

a		
		a

(틀린 예 Ⅱ)

 $b \mid d$

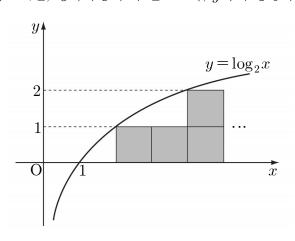
- I . 각 행과 각 열에 문자가 중복되지 않게 배열한다.
- Ⅱ. 4등분한 정사각형의 내부에 문자가 중복되지 않게 배열한다.
- 이 때, 배열할 수 있는 모든 경우의 수를 구하시오. [4점]

(바른 예)

d

c

 $b \mid a$


 $d \mid c$

c	d	a	
\overline{a}	b	c	
d	c	d	
\overline{b}	a	c	

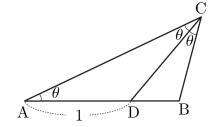
(틀린 예 I)

a	b	c	b	
c				
d				
c				

25. 그림과 같이 $y = \log_2 x$, x = 30, y = 0으로 둘러싸인 영역에 한 변의 길이가 1인 정사각형을 서로 겹치지 않게 그리려고 한다. 이 때, 그릴 수 있는 한 변의 길이가 1인 정사각형의 최대 개수를 구하시오. (단, 정사각형의 각 변은 x축, y축에 평행하다.) [4점]

26번부터 30번까지는 선택과목 문항입니다. 선택한 과목의 문제를 풀기 바랍니다.

미분과 적분

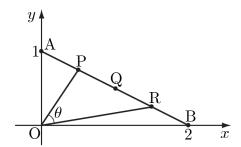

 $26. \lim_{\theta \to 0} \left(\frac{2}{\sin^2 \theta} - \frac{1}{1 - \cos \theta} \right)$ 의 값은? [3점]

- $2\frac{1}{2}$
- 3 1
- **4** 2
- **⑤** 4

 $27.0 \le x \le 2\pi$ 일 때, 방정식 $\sin 2x - \cos x = 0$ 을 만족시키는 모든 x의 합은? [3점]

- $\textcircled{1} \ \frac{3}{2}\pi$
- 2π
- $3 \frac{5}{2} \pi$
- 4 3π

28. 삼각형 ABC에서 각 C의 이등분선이 변 AB와 만나는 점을 D라하자. 삼각형 ADC가 이등변삼각형이고 $\overline{\rm AD} = 1$ 일 때, $\lim_{\theta \to 0} \overline{\rm AB}$ 의 값은? [3점]


- ① 1
- $3\frac{4}{3}$
- $4)\frac{5}{4}$
- $\boxed{5} \frac{6}{5}$

- $29.\ 0 \le x \le \pi$ 일 때, $f(x) = \sin x + \cos x 2\sin x \cos x$ 의 최대값과 최소값의 곱은? [4점]

 - 3 0
 - 4 1

단답형

30. 두 점 A(0,1), B(2,0)을 이은 선분 AB를 사등분하는 점을 각각 P, Q, R이라 하자. ∠POR = θ라 할 때, 30tanθ 의 값을 구하시오. [4점]

※ 확인사항

○ 문제지와 답안지의 해당란을 정확히 기입(표기)했는지 확인 하시오.

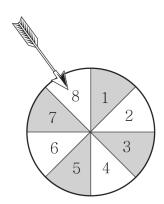
확률과 통계

26. 다음은 어느 동아리 회원을 대상으로 일주일 동안의 동아리 홈페이지 방문 횟수를 조사하여 십의 자리의 수를 줄기로, 일의 자리의 수를 잎으로 하는 줄기와 잎 그림이다. 이 자료의 중앙값과 평균이 모두 24일 때, a+b의 값은? [3점]

줄기) O
0	9
1	2, 4, 8
2	a, 8, 9
3	b
4	5

- ① 7
- 2 8
- 3 9
- **4** 10
- ⑤ 11

27. 다음	- 9개의	자료에서	평균을	m , Ξ	E준편차	를 σ $\ddot{\imath}$	라 할	때
구간	$(m-\sigma)$	$(m+\sigma)^{\alpha}$	에 있는	자료의	의 개수는	-? [3	점]	


1 2 3 4 5 6 7 8 9

- \bigcirc 3
- 2 4
- 3 5
- **4** 6
- 5 7

28. 3개 팀이 참가한 축구대회에서 한 팀은 바로 결승전에 진출하고 나머지 두 팀이 예선전을 치르려고 한다. 각 팀의 주장 3명이 모여 가위, 바위, 보를 하여 3명 중 1명만 다르게 낼 때, 다르게 낸 1명이 속한 팀이 결승전에 진출하기로 하였다. 한 번의 가위, 바위, 보로 결승전에 진출할 한 팀이 결정될 확률은? [4점]

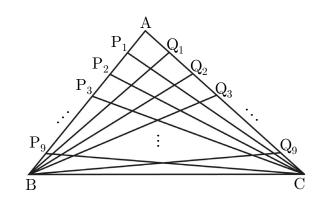
- ② $\frac{1}{3}$
- $3\frac{4}{9}$
- $4)\frac{5}{9}$

29. 그림과 같이 균등하게 8개의 영역으로 나누어진 원판에 1부터 8까지의 자연수가 적혀 있다. 이 원판을 회전시킨 후 화살을 2번 쏘았을 때, 화살이 꽂힌 영역의 두 수의 차가 2보다 클 확률은? (단, 화살은 반드시 원판 내부에 꽂히며, 경계선에 꽂힌 것은 고려하지 않는다.) [4점]

- $2\frac{15}{32}$
- $\frac{1}{2}$
- $4 \frac{17}{32}$

단답형

30. 어느 회사에서는 신입 사원을 3단계를 거쳐 선발한다. 각 단계는 100점 만점으로 환산하고 1단계 20%, 2단계 30%, 3단계 50% 의 가중치를 둔다고 한다. 1단계 82점, 2단계 78점, 3단계 90점을 받은 지원자의 가중평균 점수를 m_w 라 할 때, $10m_w$ 의 값을 구하시오. [3점]


※ 확인사항

○ 문제지와 답안지의 해당란을 정확히 기입(표기)했는지 확인 하시오.

이산수학

- **26.** 어느 세 점도 한 직선 위에 있지 않은 서로 다른 6개의 점이 있다. 이 중 두 점을 연결하여 만들 수 있는 선분의 개수는? [3점]
 - ① 9개
 - ② 12개
 - ③ 15개
 - ④ 18개
 - ⑤ 21개

 ${f 27.}$ 삼각형 ABC의 변 AB와 변 AC를 ${f 10}$ 등분한 점을 각각 ${f P_1}, {f P_2},$ ${f P_3}, \cdots, {f P_9}$ 와 ${f Q_1}, {f Q_2}, {f Q_3}, \cdots, {f Q_9}$ 라 하자. 선분 ${f BQ_1}, {f BQ_2},$ ${f BQ_3}\cdots, {f BQ_9}$ 와 선분 ${f CP_1}, {f CP_2}, {f CP_3}, \cdots, {f CP_9}$ 를 따라 잘 랐을 때, 만들어지는 사각형의 개수는? [3점]

- ① 36
- 2 49
- 364
- 4 81
- **⑤** 100

- 28. 어느 학급의 반장 선거에 3명이 입후보하였다. 후보자 3명을 포함 한 34명이 투표에 참가하여 후보자 3명 중 1명에게만 투표하 고 최다득표자가 당선되는 방식으로 진행하였을 때, 항상 옳은 것은? (단, 기권표나 무효표는 없다.) [3점]
 - ① 당선자는 반드시 18표 이상을 얻었다.
 - ② 한 표도 얻지 못한 후보자가 반드시 있다.
 - ③ 모든 후보자는 11표 이하의 표를 얻었다.
 - ④ 모든 후보자는 반드시 한 표 이상을 얻었다.
 - ⑤ 반드시 12표 이상의 표를 얻은 후보자가 있다.

- 29. 7명의 학생이 양로원으로 봉사활동을 갔다. 청소 도우미 2명, 빨 래 도우미 2명, 식사 도우미 3명으로 역할을 나누려고 할 때, 가능 한 방법의 수는? [4점]
 - ① 105
 - 2 210
 - ③ 315
 - 420
- $\bigcirc 5630$

단답형

30. 집합 $A = \{1, 2, 3, \dots, 9\}$ 에 대하여 1을 반드시 포함하고 원소의 개수가 4개 이하인 집합 A의 부분집합의 개수를 구하시오. [4점]

※ 확인사항

○ 문제지와 답안지의 해당란을 정확히 기입(표기)했는지 확인 하시오.