한양대학교 2013학년도 수시 1차

학 업 우 수 자(의예과) 한양우수과학인(의예과)

모의수리사고평가 (2회)

수험번호(고교명) (

) 성명 (

)

수험생 유의사항

- 1. 120분 안에 답안을 작성하시오.
- 2. 문항별로 답안지 1장 범위 내에서 답안을 작성하시오.
- 3. 제목을 쓰지 말고 본문부터 시작하시오.
- 4. 수정 시 검정 볼펜으로 줄을 긋고 다시 쓰시오.
- 5. 답안지와 문제지 및 연습지를 함께 제출하시오.
- 6. 다음 경우는 0점 처리됩니다.
 - 1) 답안을 검정 볼펜으로 작성하지 않은 경우
 - 2) 자신의 신원을 드러내는 표기나 표현을 한 경우
 - 3) 수정액이나 수정테이프를 사용한 경우
 - 4) 답안을 해당 답란에 작성하지 않은 경우

<문제 1> 다음 제시문을 읽고 문제에 답하시오.

수열 $\{a_n\}$ 의 첫째항 a_1 은 1, 둘째항 a_2 는 2이고, 이웃하는 세 항사이의 관계는 다음과 같이 행렬로 주어진다.

$$\begin{pmatrix} a_{n+2} & a_{n+1} \\ a_{n+1} & a_n \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{pmatrix}, \quad n \geq 2.$$

- (1) 이차 정사각행렬 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 에 대해 $\det(A)=ad-bc$ 라고 정의하면, 모든 자연수 n에 대해 $\det(A^n)=(\det(A))^n$ 이 성립함을 보이시오. 단, A^n 은 행렬 A의 n개의 곱인 행렬이다.
- (2) (문제1)의 결과를 이용해서 모든 $n \ge 1$ 에 대해 등식

$$a_{n+2} a_n - a_{n+1}^2 = (-1)^{n+1}$$

이 성립함을 보이시오.

(3) (2)의 결과를 이용해서 수열 $\left\{\frac{a_{n+1}}{a_n}\right\}$ 의 극한이 존재함을 보이고, 그 값을 구하시오.

<문제 2> 아래 제시된 자연수m, n에 대하여 정의되는 세 종류의 무한수열에 대하여 문제에 답하시오.

함수 f(x)가 구간 [a,b]에 속하는 임의의 두 수 x_1,x_2 에 대하여 $x_1 < x_2$ 일 때 $f(x_1) < f(x_2)$ 이면 함수 f(x)는 구간 [a,b]에서 증가한다고 하고 $f(x_1) > f(x_2)$ 이면 함수 f(x)는 구간 [a,b]에서 감소한다고 한다.

- (1) 함수 f(x)는 구간 [a,b]에서 증가하고 함수 g(x)는 구간 [a,b]에서 감소할 때, 만약 f(x)와 g(x)의 함수값이 항상 양수이면 부등식 $f(a)g(b) \leq f(x)g(x) \leq f(b)g(a)$ 가 구간 [a,b]에 속하는 모든 x에 대하여 성립함을 설명하시오.
- (2) 구간 [0,1]에 속하는 임의의 x에 대하여 부등식 $1 \le \frac{x+1}{2^x} \le 2$ 가 항상 성립함을 설명하시오.
- (3) 방정식 $x\cos x = 2$ 가 구간 $\left[\frac{(n-1)\pi}{4}, \frac{n\pi}{4}\right]$ 에서 해를 갖게 되는 10이하의 자연수 n을 모두 구하고 그 이유를 설명하시오.

한양대학교 2013학년도 신입학전형 수시 1차 모의수리사고평가

학 업 우 수 자(의예과) 한양우수과학인(의예과)

출제의도, 평가내용 및 예시답안

1. 출제 의도

수리사고평가는 단순히 어떤 값을 계산하는 것이 아니라 수학적 사고를 요구하는 문제로 구성하며 학생들의 수학적 추론 능력과 창의력을 측정하고자 하였다. 고교과정의 정의와 개념들을 기본으로 하여 논리적으로 문제가 요구하는 결론에 도달할 수 있는지를 측정하도록 구성되었다.

2. 문제해설 및 평가내용

<문제 1>

다음의 수학적 지식과 능력을 평가하기 위한 문제이다.

- 행렬의 연산과 그 성질을 이해하고 있는가?
- 수학적 귀납법을 적절하게 사용할 수 있는가?
- 수열의 극한의 의미를 이해하고 계산할 수 있는가?
- 논증을 전개하면서 추론과 주장을 효과적으로 표현하고 있는가?

<문제 2>

- 함수의 증가 감소를 부등식에 활용할 수 있는가?
- 함수의 그래프를 이용하여 방정식의 해를 구하는 방법을 알고 있는가?
- 중간값의 정리를 알고 있는가?

3. 배점 및 예시답안

<문제1>

문항1. (20점)

답안: n 에 관해 수학적 귀납법을 이용한다.

n=1 이면, $\det(A^1) = \det(A) = (\det(A))^1$ 으로 등식이 성립한다.

 $n \ge 2$ 일 때, n = k 이면 등식이 성립한다고 가정하고, n = k+1 일 때도 성립함을 보이자.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $A^k = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ 라 하면, $\det(A) = ad - bc$ 이고, 가정에 의해

 $(\det(A))^k = \det(A^k) = ps - qr$ 이다.

따라서,
$$\det(A^{k+1}) = \det(A \cdot A^k) = \det\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} \end{pmatrix} = \det\begin{pmatrix} \begin{pmatrix} ap+br & aq+bs \\ cp+dr & cq+ds \end{pmatrix} \end{pmatrix}$$
$$= (ap+br)(cq+ds) - (aq+bs)(cp+dr) = (ad-bc)(ps-qr)$$
$$= \det(A)(\det(A))^k = (\det(A))^{k+1}$$
이므로 $n = k+1$ 일 때도 등식이 성립한다.

문항2. (40점)

답안: 행렬을 이용한 수열 $\{a_n\}$ 의 표현으로부터

$$\begin{pmatrix} a_{n+2} & a_{n+1} \\ a_{n+1} & a_n \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} a_n & a_{n-1} \\ a_{n-1} & a_{n-2} \end{pmatrix}$$

$$= \cdots = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} a_3 & a_2 \\ a_2 & a_1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{n+1}$$

이 성립한다.

여기서 (문제1)의 결과에 의해
$$\det \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{n+1} = \det \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{n+1} = (-1)^{n+1}$$
 이 성립하므로,
$$a_{n+2}\,a_n - a_{n+1}^2 = \det \begin{pmatrix} a_{n+2} & a_{n+1} \\ a_{n+1} & a_n \end{pmatrix} = \det \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{n+1} = (-1)^{n+1}$$
 을 얻는다.

문항3. (40점)

답안: (문제2)의 등식에 $a_{n+2} = 2a_{n+1} + a_n$ 을 대입해서 정리하면,

$$a_{n+1}^2 - 2a_na_{n+1} - a_n^2 + (-1)^{n+1} = 0$$
 이 되고, 이 등식을 a_{n+1} 에 대해 정리하면,

$$a_{n+1} = a_n \pm \sqrt{2a_n^2 + (-1)^n}$$
 이다. 이 때 $a_{n+1} > 0$ 이므로

$$a_{n+1} = a_n + \sqrt{2a_n^2 + (-1)^n}$$
이고, 따라서

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a_n + \sqrt{2a_n^2 + (-1)^n}}{a_n} = \lim_{n \to \infty} \left(1 + \sqrt{2 + \frac{(-1)^n}{a_n^2}}\right) = 1 + \sqrt{2} \quad \text{olt.}$$

<문제2>

문항1. (10점)

구간 [a,b]에 속하는 임의의 x에 대하여 다음의 두 부등식

$$0 \le f(a) \le f(x) \le f(b), \quad 0 \le g(b) \le g(x) \le g(a)$$

이 성립하므로 부등식의 성질에 의해서 $f(a)g(b) \leq f(x)g(x) \leq f(b)g(a)$ 가 성립한다. -----(10점) f(x)=x+1, $g(x)=2^x$, h(x)=1/g(x)라 할 때, 구간 [0,1]에서 f(x)는 증가함수이고 h(x)는 감소함수이다. 따라서 $\frac{x+1}{2^x}=f(x)h(x)\leq f(1)h(0)=2$ 이다. -----(10점)

한편, 구간 [0,1]에서 항상 $0 < g(x) \le f(x)$ 이므로 (∵양 끝점에서 두 함수의 함숫값이 같은데 y=f(x)의 그래프는 직선이고 y=g(x)의 그래프는 아래로 볼록) $1 \le \frac{f(x)}{g(x)} = \frac{x+1}{2^x}$ 가 성립한다. 그러므로 구간 [0,1]에서 부등식 $1 \le \frac{x+1}{2^x} \le 2$ 이 항상 성립한다.

-----(10점)

문항3. (70점)

f(x) = x, $g(x) = \cos x$, $h(x) = x \cos x$ 라 하자.

구간 $\left[0,\frac{\pi}{4}\right]$ 에서 $h(x) \leq \frac{\pi}{4} \leq 1$ 이므로 이 구간에서 방정식 h(x) = 2는 해를 갖지 않는다.

----(5점)

구간 $\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ 에서 f(x)는 증가하고 g(x)는 감소하므로 (a)로부터

 $h(x) = f(x)g(x) \le f(\pi/2)g(\pi/4) = \frac{\pi}{2\sqrt{2}} < 2$ 임을 알 수 있다. 따라서 방정식 h(x) = 2는 구간

 $[\pi/4,\pi/2]$ 에서 해를 갖지 않는다. -----(25점

구간 $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ 에서 $h(x) \leq 0$ 이므로 이 구간에서 방정식 h(x) = 2는 해를 갖지 않는다.

----(5점

 $h(3\pi/2) = 0$ 이고 $h(7\pi/4) = \frac{7\pi}{4\sqrt{2}} > 2$ 이므로 중간값정리에 의해서 h(c) = 2를 만족하는 c가 구간

 $\left[\frac{3\pi}{2},\frac{7\pi}{4}\right]$ 에 존재한다. 즉, 이 구간에서 방정식 h(x)=2는 적어도 하나의 해를 갖는다. (이 구간에서 h(x)는 증가하므로 실제로는 오직 하나의 해만 존재함.)

-----(10점

구간 $\left[\frac{7\pi}{4}, 2\pi\right]$ 에서 f(x)와 g(x)가 모두 증가하므로 h(x)도 증가한다. 따라서 이 구간에서 $h(x) \geq h(7\pi/4) > 2$ 이고 방정식 h(x) = 2는 해를 갖지 않는다.

-----(5점

구간 $\left[2\pi,\frac{9\pi}{4}\right]$ 에서 f(x)는 증가하고 g(x)는 감소하므로 (a)로부터

 $h(x) = f(x)g(x) \ge f(2\pi)g(9\pi/4) = \frac{2\pi}{\sqrt{2}} > 2$ 이므로 이 구간에서 방정식 h(x) = 2는 해를 갖지

이상으로부터 방정식 $x\cos x=2$ 이 구간 $\left[\frac{(n-1)\pi}{4},\frac{n\pi}{4}\right]$ 에서 해를 갖게 되는 10 이하의 자연수 n은 7과 10밖에 없음을 알 수 있다.