2018학년도 논술 모의고사(1차) 자연계열

① 논술 모의고사 자연계 문항1

1. 일반정보

ੂ ਪਾਲੇ	■ 논술고사 □ 면접 및 구술고사	
전형명	논술우수자(일반)	
해당 대학의 계열(과목) / 문항번호	자연계열(수학) / 1번	
출제 범위	수학과 교육과정 과목명	수학 , 미적분 , 미적분 , 기하와 벡터
2 1 1 1	핵심개념 및 용어	음함수의 미분법, 음함수, 정적분
예상 소요 시간	40분	

2. 출제 의도

합성함수의 미분법을 이용하여 도함수를 구하고 이를 이용하여 접선의 방정식을 구하여 논제에서 요구하는 사항을 정확히 이해하고 제시문의 내용, 그리고 앞의 문제의 결과 등을 바탕으로 논제의 답을 논리적으로 서술할 수 있는 지를 평가한다.

3. 출제 근거

1. 교육과정 및 관련 성취기준 (교육과정: 교육과학기술부 고시 제2011-361호 [별책] "수학과 교육과정", 성취기준: "2009년 개정 교육과정에 따른 성취기준·성취수준: 고등학교 수학")

데시문	관련 성취기준
교유과저	[미적분 II]-(다) 미분법-① 여러 가지 미분법
<u> </u>	② 합성함수를 미분할 수 있다.
서치기즈	[미적분 11]-다. 미분법-1) 여러 가지 미분법
경케기正	미적2312. 합성함수를 미분할 수 있다.
교으고서	[미적분]-(라) 다항함수의 적분법-③ 정적분의 활용
亚古马3	① 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
서치기조	[미적분 I]-라. 다항함수의 적분법-3) 정적분의 활용
성위기군	미적1431. 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
교으리저	[수학 I]-(다) 도형의 방정식-2 직선의 방정식
业 年40	③ 점과 직선 사이의 거리를 구할 수 있다.
ᇪᅱᅱᄌ	[수학 I]-다. 도형의 방정식-2) 직선의 방정식
성위기군	수학1323. 점과 직선 사이의 거리를 구할 수 있다.
교으리저	[기하와 벡터]-(가) 평면곡선-② 평면곡선의 접선
논제 1-1 교육과정	① 음함수를 미분하여 곡선 위의 한 점에서의 접선의 방정식을
	네시문 교육과정 성취기준 교육과정 성취기준 교육과정

	I	구할 수 있다.
		_ ㅜᆯ ㅜ ㅆ다. 「기하와 벡터]-가. 평면 곡선-2) 평면 곡선의 접선
	성취기준	기벡1121. 음함수를 미분하여 곡선 위의 한 점에서의 접선의
		방정식을 구할 수 있다.
		[기하와 벡터]-(가) 평면곡선-② 평면곡선의 접선
	교육과정	① 음함수를 미분하여 곡선 위의 한 점에서의 접선의 방정식을
논제 1-2		구할 수 있다.
<u></u> ∧∥ 1-2		[기하와 벡터]-가. 평면 곡선-2) 평면 곡선의 접선
	성취기준	기벡1121. 음함수를 미분하여 곡선 위의 한 점에서의 접선의
		방정식을 구할 수 있다.
		[수학 1]-(다) 도형의 방정식-① 평면좌표
		① 두 점 사이의 거리를 구할 수 있다.
		[수학 1]-(다) 도형의 방정식-② 직선의 방정식
	교육과정	③ 점과 직선 사이의 거리를 구할 수 있다.
	1 H 4 H 6	[미적분 I]-(라) 다항함수의 적분법-③ 정적분의 활용
		① 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
		[미적분 11]-(라) 적분법-① 여러 가지 적분법
		③ 여러 가지 함수의 부정적분과 정적분을 구할 수 있다.
논제 1-3		[수학 I]-다. 도형의 방정식-1) 평면좌표
		수학1311. 두 점 사이의 거리를 구할 수 있다.
		[수학 1]-다. 도형의 방정식-2) 직선의 방정식
		수학1323. 점과 직선 사이의 거리를 구할 수 있다.
	성취기준	[미적분 1]-라. 다항함수의 적분법-3) 정적분의 활용
		미적1431. 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
		[미적분 II]-라. 적분법-1) 여러 가지 적분법
		미적2413-1. 함수 $y=x^n$ (n 은 실수)의 부정적분과 정적분을
		구할 수 있다.

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
	수학	황선욱 외	신사고	2016	139-141
고등학교	미적분	정상권 외	금성출판사	2016	125-127
교과서	미적분	정상권 외	금성출판사	2016	114, 184-193
	기하와 벡터	김원경	비상교육	2016	33-34
기타					

4. 문항 해설

(1-1) 제시문 (가)의 합성함수의 미분법을 이용하여 음함수의 도함수를 구할 수 있는지를 묻는 문항이다.

(1-2) 음함수 $\sqrt{x} + \sqrt{y} - 1 = 0$ 의 접선의 방정식이 각각의 좌표축과 만나는 점의 합이 일정 함을 보이는 문항이다.

(1-3) 논제 (1-2)의 결과로부터 접선의 방정식을 얻을 수 있고 정적분을 이용하여 도형 A의 넓이가 $\frac{1}{162}$ 일 때, 선분 QR의 길이와 OS의 길이를 구하는 문항이다.

5. 채점 기준

- 음함수의 도함수 구하기
- 접선의 방정식 구하기
- 정적분의 계산능력과 접선까지의 거리 구하기

하위 문항	채점 기준	배점
(1-1)	음함수의 도함수를 구하면 5점	
(1.2)	접선의 방정식을 구하면 6점	6점
(1-2)	좌표축과의 교점을 구하면 4점	4점
(1-3)	도형 A 의 값을 적분을 이용하여 표현하면 4점 계산이 맞으면 3점	7점
	선분 QR 의 길이를 구하면 4점, 선분 OS 의 길이를 구하면 4점	8점

6. 예시 답안

(1-1) 합성함수의 미분법을 이용하면

$$\frac{1}{2\sqrt{x}} + \frac{y'}{2\sqrt{y}} = 0$$

이고 따라서

$$y' = -\frac{\sqrt{y}}{\sqrt{x}} = -\frac{1 - \sqrt{x}}{\sqrt{x}}$$
 (단, $x > 0$)

(별해)
$$y = (1 - \sqrt{x})^2 = 1 - 2\sqrt{x} + x$$
 이므로 $\frac{dy}{dx} = -\frac{1}{\sqrt{x}} + 1 = -\frac{1 - \sqrt{x}}{\sqrt{x}}$

(1-2) 논제 (1-1)에 의해 $P(a,(1-\sqrt{a})^2)$ 에서의 접선의 기울기가

$$y'_{x=a} = -\frac{1-\sqrt{a}}{\sqrt{a}}$$

이므로 접선의 방정식은

$$y - (1 - \sqrt{a})^2 = -\frac{1 - \sqrt{a}}{\sqrt{a}} (x - a)$$

이다.

따라서, x축과 교점은 $x=\sqrt{a}$ 이고 y축과 교점은 $y=1-\sqrt{a}$ 이므로 좌표축과 만나는 점들의 합은 항상 1로 일정하다.

(1-3) 논제 (1-2)에 의해 $P(a,(1-\sqrt{a})^2)$ 에서의 접선의 방정식은

$$\frac{x}{\sqrt{a}} + \frac{y}{1 - \sqrt{a}} = 1$$

이고 $Q(\sqrt{a},0)$, $R(0,1-\sqrt{a})$ 이다.

따라서, $\overline{QR} = \sqrt{a + (1 - \sqrt{a})^2}$ 이고 제시문 (다)에 의해 O에서 접선까지의 거리 \overline{OS} 는

$$\overline{OS} = \frac{\sqrt{a} - a}{\sqrt{a + (1 - \sqrt{a})^2}}$$

이다.

한편, 도형 4의 넓이는 정적분을 이용하여 계산하면 다음과 같다.

$$A = \int_{a}^{1} (1 - 2\sqrt{x} + x) dx - \frac{1}{2} (\sqrt{a} - a)(1 - \sqrt{a})^{2}$$

$$= \int_{a}^{1} (1 - 2\sqrt{x} + x) dx - \frac{1}{2} \sqrt{a} (1 - \sqrt{a})^{3}$$

$$= \frac{1}{6} + \frac{1}{2} a - \frac{1}{6} a \sqrt{a} - \frac{1}{2} \sqrt{a} = \frac{1}{6} (1 - \sqrt{a})^{3}$$

 $A=rac{1}{162}$ 이므로 $a=rac{4}{9}$ 가 된다. 따라서, $\overline{QR}=rac{\sqrt{5}}{3}$ 이고 $\overline{OS}=rac{2\sqrt{5}}{15}$ 이다.

② 논술 모의고사 자연계 문항2

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사	
전형명		논술우수자(일반)
해당 대학의 계열(과목) / 문항번호	자연계열(수학) / 2번	
출제 범위	수학과 교육과정 과목명	미적분 ॥
	핵심개념 및 용어	평균값 정리, 덧셈정리, 이계도함수
예상 소요 시간	40분	

2. 출제 의도

평균값 정리의 뜻을 이해하고 문제에 적용할 수 있는 지, 삼각함수의 이계도함수를 구하고 삼각함수의 덧셈정리를 이해하고 이를 이용하여 논제의 답을 구할 수 있는 지를 평가하고자 하였다.

3. 출제 근거

1. 교육과정 및 관련 성취기준 (교육과정: 교육과학기술부 고시 제2011-361호 [별책] "수학과 교육과정", 성취기준: "2009년 개정 교육과정에 따른 성취기준·성취수준: 고등학교 수학")

문항 및 제시문		관련 성취기준
	교으리저	[미적분]-(다) 다항함수의 미분법-③ 도함수의 활용
레시므 (기)	교육과정	② 함수에 대한 평균값 정리를 이해한다.
제시문 (가)	성취기준	[미적분 1]-다. 다항함수의 미분법-3) 도함수의 활용
	8위기군	미적1332. 함수에 대한 평균값 정리를 이해한다.
	교육과정	[미적분 11]-(나) 삼각함수-② 삼각함수의 미분
제시문 (나)	TH440	① 삼각함수의 덧셈정리를 이해한다.
제시군 (미)	성취기준	[미적 11]-나. 삼각함수-2) 삼각함수의 미분
	6 제기교	미적2221-2. 삼각함수의 덧셈정리를 이해한다.
	교육과정 노제 2-1	[미적분 I]-(다) 다항함수의 미분법-③ 도함수의 활용
논제 2-1		② 함수에 대한 평균값 정리를 이해한다.
	서취기조	[미적분 1]-다. 다항함수의 미분법-3) 도함수의 활용
	성취기준	미적1332. 함수에 대한 평균값 정리를 이해한다.
		[미적분 11]-(다) 미분법-① 여러 가지 미분법
	교육과정	④ 이계도함수를 구할 수 있다.
논제 2-2	성취기준	[미적분 11]-다. 미분법-1) 여러 가지 미분법
	6케기준	미적2314. 이계도함수를 구할 수 있다.

		[미적분 I]-(다) 다항함수의 미분법-③ 도함수의 활용
	교육과정	② 함수에 대한 평균값 정리를 이해한다.
		[미적분 11]-(나) 삼각함수-② 삼각함수의 미분
노테 이 이		① 삼각함수의 덧셈정리를 이해한다.
논제 2-3	성취기준	[미적분]-다. 다항함수의 미분법-3) 도함수의 활용
		미적1332. 함수에 대한 평균값 정리를 이해한다.
		[미적 11]-나. 삼각함수-2) 삼각함수의 미분
		미적2221-2. 삼각함수의 덧셈정리를 이해한다.

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
	미적분	김원경 외	비상교육	2016	100-102
고등학교 교과서	미적분	정상권 외	금성출판사	2016	83,85
	기하와 벡터	김창동 외	교학사	2016	122-136
기타					

4. 문항 해설

- (2-1) 평균값 정리를 이해하고 적용할 수 있는지를 평가하는 문항으로 도함수가 0이 되는 함수는 상수함수임을 보이는 문항이다.
- (2-2) 삼각함수(사인,코사인)의 이계도함수를 구하고 논제의 방정식을 만족하는 지를 확인할 수 있는지를 평가하는 문항이다.
- (2-3) 함수 y가 논제 (2-2)를 만족할 때, 논제 (2-1)을 두 함수 f(x),g(x)에 적용하여 상수함 수임을 확인하고 f(x),g(x)사이의 관계식을 이용하여 y를 사인함수와 코사인함수로 표현할 수 있다. 제시문 (나)를 이용하여 $y=r_{\sin}(x+\alpha)$ 형태로 나타내면 r과 $\tan \alpha$ 를 구할 수 있다.

5. 채점 기준

- 평균값 정리를 이해하고 적용하기
- 삼각함수의 이계도함수를 구하기
- 논제에서 요구하는 사항을 정확히 이해하고 제시문의 내용, 그리고 앞의 문제의 결과 등을 바탕으로 논제의 답을 논리적으로 서술하기

하위 문항	채점 기준	배점
(2-1)	$a < x \le b$ 인 임의의 실수 x 에 대하여 구간 $[a,x]$ 에 평균값 정리를 적용하면 5점	5점
	상수함수임을 논리적으로 설명하면 5점	5점
(2-2)	사인,코사인 함수의 2계도함수를 구하여 주어진 식에 대입하여 성립함을 보이면 5점 (이계도함수만 구한 경우 각 2점)	5점
	(a) $f'(x) = 0, g'(x) = 0$ 임을 보이면 4점 상수함수임을 언급하면 1점	5점
(2-3)	(b) $f(x),g(x)$ 사이의 관계식을 이용하여 y 를 사인함수와 코사인함수로 표현하면 5 점	5점
	(c) 삼각함수의 덧셈법칙을 이용하여 $y=r_{\mathrm{Sin}}(x+\alpha)$ 로 표현하면 6점 r 을 구하면 2점 $\tan \alpha$ 를 구하면 2점	10점

6. 예시 답안

(2-1) $a < x \le b$ 인 임의의 실수 x에 대하여 구간 [a,x]에 제시문 (가)의 평균값 정리를 사용하면 $\frac{h(x)-h(a)}{x-a}=h'(c)$ 인 c가 a와 x사이에 존재한다. 가정에 의하여 h'(c)=0이므로 h(x)-h(a)=0이다. 즉, $a < x \le b$ 인 임의의 실수 x에 대하여 h(x)=h(a)이므로 h(x)는 상수함수이다.

(2-2) $y' = 2\cos x - 3\sin x$, $y'' = -2\sin x - 3\cos x$ 이므로 y'' + y = 0을 만족한다.

(2-3) (a) 미분법에 의하여

 $f'(x)=(y'\cos x-y\sin x)-(y''\sin x+y'\cos x)=0$ 이고 마찬가지로 g'(x)=0이다. 그러므로 논제 (2-1)에 의해 $f(x)=c_1$ 과 $g(x)=c_2$ 은 상수 함수이다.

(b) 연립방정식

$$\begin{cases} c_1 = y \cos x - y' \sin x \\ c_2 = y \sin x + y' \cos x \end{cases}$$

에서 y'을 소거하면

$$y = c_1 \cos x + c_2 \sin x$$

를 얻는다.

(c) y(0) = 1에서 $c_1 = 1$ 이고 y'(0) = 2에서 $c_2 = 2$ 이다. 이때,

$$y = \cos x + 2\sin x = \sqrt{5} \left(\frac{1}{\sqrt{5}} \cos x + \frac{2}{\sqrt{5}} \sin x \right)$$

이고 제시문 (나)의 덧셈정리를 이용하면

$$y = \sqrt{5} \sin(x + \alpha)$$
 (단, $\tan \alpha = 1/2$)

이다. 따라서, $r=\sqrt{5}$ 이고 $\tan \alpha = \frac{1}{2}$ 이다.

③ 논술 모의고사 자연계 문항3

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사	
전형명	논술우수자(일반)	
해당 대학의 계열(과목) / 문항번호	7	자연계열(수학) / 3번
출제 범위	수학과 교육과정 과목명	미적분 , 미적분
27 11	핵심개념 및 용어	최대 \cdot 최소 정리, 함수의 극한, $\lim_{x \to a} f(x)$
예상 소요 시간	40분	

2. 출제 의도

함수 f(x)의 최대·최소 정리를 이해하고 극값을 판정하여 최솟값을 구하고 함수의 그래프 영역들 사이의 넓이를 정적분을 이용하여 계산하고 함수의 극한 성질을 문제해결에 적용할 수 있는가를 평가하고자 하였다.

3. 출제 근거

1. 교육과정 근거

교육과정 및 관련 성취기준 (교육과정: 교육과학기술부 고시 제2011-361호 [별책] "수학과 교육 과정", 성취기준: "2009년 개정 교육과정에 따른 성취기준·성취수준: 고등학교 수학")

문항 및	항 및 제시문 관련 성취기준	
		[미적분 I]-(나) 함수의 극한과 연속-② 함수의 연속
		② 연속함수의 성질을 이해하고, 이를 활용할 수 있다.
	교육과정	[미적분 I]-(다) 다항함수의 미분법-③ 도함수의 활용
		③ 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있
제시문 (가)		다.
제시군 (기)		[미적분]-나. 함수의 극한과 연속-2) 함수의 연속
	성취기준	미적1222. 연속함수의 성질을 이해하고, 이를 활용할 수 있다.
		[미적분 1]-다. 다항함수의 미분법-3) 도함수의 활용
		미적1333. 함수의 증가와 감소, 극대와 극소를 판정하고 설명
		할 수 있다.
		[미적분 11]-(가) 지수함수와 로그함수-② 지수함수와 로그함
제시문 (나)	교육과정	수의 미분
		① 지수함수와 로그함수의 극한값을 구할 수 있다.

	성취기준	[미적분 II]-가. 지수함수와 로그함수-2) 지수함수와 로그함수의 미분 미적 2121. 무리수 e 의 뜻을 알고, 지수함수와 로그함수의 극한값을 구할 수 있다.	
제시문 (다)	교육과정	[미적분 II]-(라) 적분법-② 정적분의 활용 ① 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.	
	성취기준	[미적분 II]-라 적분법-2) 정적분의 활용 미적2421. 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.	
제시문 (라)	교육과정	[미적분 1]-(나) 함수의 극한과 연속-① 함수의 극한 ② 함수의 극한에 대한 성질을 이해하고, 여러 가지 함수의 극 한값을 구할 수 있다.	
제시군 (다)	성취기준	[미적분 I]-나. 함수의 극한과 연속-1) 함수의 극한 미적1212. 함수의 극한에 대한 성질을 이해하고, 여러 가지 함 수의 극한값을 구할 수 있다.	
논제 3-1	교육과정	[미적분 1]-(나) 함수의 극한과 연속-② 함수의 연속 ② 연속함수의 성질을 이해하고, 이를 활용할 수 있다. [미적분 1]-(다) 다항함수의 미분법-③ 도함수의 활용 ③ 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.	
	성취기준	[미적분 I]-나. 함수의 극한과 연속-2) 함수의 연속 미적1222. 연속함수의 성질을 이해하고, 이를 활용할 수 있다. [미적분 I]-다. 다항함수의 미분법-3) 도함수의 활용 미적1333. 함수의 증가와 감소, 극대와 극소를 판정하고 설명 할 수 있다.	
논제 3-2	교육과정	[미적분 II]-(라) 적분법-② 정적분의 활용 ① 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.	
	성취기준	[미적분 II]-라 적분법-2) 정적분의 활용 미적2421. 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다. [미적분 I]-(나) 함수의 극한과 연속-① 함수의 극한 ② 함수의 극한에 대한 성질을 이해하고, 여러 가지 함수의 = 한값을 구할 수 있다. [미적분 II]-(가) 지수함수와 로그함수-② 지수함수와 로그함 수의 미분	
	교육과정		
논제 3-3		① 지수함수와 로그함수의 극한값을 구할 수 있다. [미적분]-나. 함수의 극한과 연속-1) 함수의 극한	
	성취기준	미적1212. 함수의 극한에 대한 성질을 이해하고, 여러 가지 함수의 극한값을 구할 수 있다. [미적분 II]-가. 지수함수와 로그함수-2) 지수함수와 로그함수의 미분 미적 2121. 무리수 e 의 뜻을 알고, 지수함수와 로그함수의 극	

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	미적분ㅣ	김원경 외	비상교육	2016	57,112
	미적분ㅣ	황선욱 외	금성출판사	2016	58,62,134
	미적분 Ⅱ	김원경 외	비상교육	2016	28-30
기타					

4. 문항 해설

- (3-1) 제시문 (가)를 적용하는 문제로 함수의 도함수를 구하여 극값을 판정하고 주어진 구간의 양 끝점에서의 값을 비교하여 최솟값을 구하는 문항이다.
- (3-2) 논제 (3-2)에서 구한 최솟값이 음수라는 사실과 정적분의 기하학적의미를 이 해하여 함수 f(x)와 x축으로 둘러싸인 영역의 넓이를 구하는 문항이다.
- (3-3) 제시문 (나)와 (라)의 극한 성질을 문제에 적용할 수 있는 지를 평가하는 문항이다.

5. 채점 기준

- 극값 구하기
- 정적분의 기하학적 의미 이해
- 함수의 극한 성질 적용

하위 문항	채점 기준	배점
(3-1)	양 끝점의 값을 구하면 2점, 도함수를 구하면 3점	5점
	$\sin x = 2a$ 의 해를 $x = \alpha$ 와 $x = \beta$ $(\alpha < \beta)$ 로 설정하여 계산 3점	3점
	극값을 판정하면 4점	4점
	최솟값을 구하면 3점	3점

(3-2)	f(x)=0의 해를 구하면 2점	2점
	f(x)의 최솟값이 음수임을 서술하면 3점	
	S(a)를 구하면 5점	5점
(3-3)	제시문 (나)와 (라)를 적용하여 계산하면 6점	6점
	극한값이 맞으면 4점	4점

6. 예시 답안

(3-1) f(x)는 닫힌 구간 $[0,2\pi]$ 에서 연속이고 열린 구간 $(0,2\pi)$ 에서 미분가능한 함수 이므로 제시문 (7)에 의해 양 끝점과 극값에서 최솟값을 갖는다. 양 끝점에서 함숫 값 $f(0)=2=f(2\pi)$ 이다. 극값을 구하기 위해 도함수를 구하면

$$f'(x) = \frac{-\sin x (\frac{1}{2} - a\sin x) - \cos x (-a\cos x)}{(\frac{1}{2} - a\sin x)^2} = \frac{a - \frac{1}{2}\sin x}{(\frac{1}{2} - a\sin x)^2} = 0$$

이고 0 < 2a < 1이므로 $\sin x = 2a$ 의 해를 $x = \alpha$ 와 $x = \beta$ $(\alpha < \beta)$ 라 하면 $0 < \alpha < \frac{\pi}{2} < \beta < \pi$ 이다. $0 < x < \alpha$ 일 때 f'(x) > 0, $\alpha < x < \beta$ 일 때 f'(x) < 0, $\beta < x < 2\pi$ 일 때 f'(x) > 0이므로 함수 f(x)는 $x = \beta$ 에서 극솟값

$$f(\beta) = \frac{\cos\beta}{\frac{1}{2} - a\sin\beta} = \frac{-\sqrt{1 - \sin^2\beta}}{\frac{1}{2} - a\sin\beta} = \frac{-\sqrt{1 - (2a)^2}}{\frac{1}{2} - a(2a)} = \frac{-2}{\sqrt{1 - 4a^2}}$$

을 갖는다. 따라서 닫힌 구간 $[0,2\pi]$ 에서 f(x)의 최솟값은 $\dfrac{-2}{\sqrt{1-4a^2}}$ 이다.

(3-2) $x = \frac{\pi}{2}, \frac{3\pi}{2}$ 에서 f(x) = 0이고 논제 (3-1)에서 f(x)의 최솟값이 음수이므로 구하는 면적은

$$S(a) = -\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\cos x}{\frac{1}{2} - a \sin x} dx = -\int_{1}^{-1} \frac{1}{\frac{1}{2} - at} dt = \int_{-1}^{1} \frac{1}{\frac{1}{2} - at} dt$$

$$= \left[-\frac{1}{a} \ln \left| \frac{1}{2} - at \right| \right]_{-1}^{1} = -\frac{1}{a} \left(\ln \left(\frac{1}{2} - a \right) - \ln \left(\frac{1}{2} + a \right) \right) = \frac{1}{a} \ln \left(\frac{1 + 2a}{1 - 2a} \right)$$

이다.

(3-3) 제시문 (나)와 (라)의 극한성질을 이용하면 다음과 같이 구할 수 있다.

$$\begin{split} \lim_{a \to 0^+} \frac{1}{a} \ln \left(\frac{1+2a}{1-2a} \right) &= \lim_{a \to 0^+} \ln \left(\frac{1+2a}{1-2a} \right)^{\frac{1}{a}} = \ln \left\{ \lim_{a \to 0^+} \left(\frac{1+2a}{1-2a} \right)^{\frac{1}{a}} \right\} \\ &= \ln \left\{ \frac{\lim_{a \to 0^+} (1+2a)^{\frac{1}{2a} \times 2}}{\lim_{a \to 0^+} (1-2a)^{\frac{1}{-2a} \times (-2)}} \right\} = \ln \left(\frac{e^2}{e^{-2}} \right) = \ln e^4 = 4 \end{split}$$

이다.